defsave_image(image:Annotated[np.ndarray,"The image to save."],save_path:Annotated[str|Path,"Header file (with '.hdr' extension) name with path."],*,metadata:Annotated[dict[str,Any]|None,"A dict containing ENVI header parameters (e.g., parameters extracted from a source image).",]=None,overwrite:Annotated[bool,"If the associated image file or header already exist and set to True, the files will be overwritten; otherwise, if either of the files exist, an exception will be raised.",]=True,dtype:Annotated[type[ImageDataType],"The numpy data type with which to store the image.",]=np.float32,):ifisinstance(save_path,str):save_path=Path(save_path)ifmetadataisNone:metadata={}os.makedirs(save_path.parent,exist_ok=True)sp.envi.save_image(hdr_file=save_path,image=image,dtype=dtype,force=overwrite,metadata=metadata,)logger.info(f"Image saved as: {save_path}")
defcreate_image(image:Annotated[np.ndarray,"The image to save."],save_path:Annotated[str|Path,"Header file (with '.hdr' extension) name with path."],*,metadata:Annotated[dict[str,Any]|None,"A dict containing ENVI header parameters (e.g., parameters extracted from a source image).",]=None,overwrite:Annotated[bool,"If the associated image file or header already exist and set to True, the files will be overwritten; otherwise, if either of the files exist, an exception will be raised.",]=True,dtype:Annotated[type[ImageDataType],"The numpy data type with which to store the image.",]=np.float32,)->SpectralImage:ifisinstance(save_path,str):save_path=Path(save_path)ifmetadataisNone:metadata={"lines":image.shape[0],"samples":image.shape[1],"bands":image.shape[2],}os.makedirs(save_path.parent,exist_ok=True)spectral_image=sp.envi.create_image(hdr_file=save_path,metadata=metadata,dtype=dtype,force=overwrite,)mmap=spectral_image.open_memmap(writable=True)mmap[:,:,:]=imagelogger.info(f"Image created as: {save_path}")returnSpectralImage(SpectralLibImage(spectral_image))
defmerge_images_by_specter(*,image_original:Annotated[SpectralImage,"Original image."],image_to_merge:Annotated[SpectralImage,"Image which will be merged onto original image."],save_path:Annotated[str|Path,"Header file (with '.hdr' extension) name with path."],overwrite:Annotated[bool,"If the associated image file or header already exist and set to True, the files will be overwritten; otherwise, if either of the files exist, an exception will be raised.",]=True,dtype:Annotated[type[ImageDataType],"The numpy data type with which to store the image.",]=np.float32,auto_metadata_extraction:Annotated[bool,"Whether to automatically extract metadata images.",]=True,):image_original_np=image_original.to_numpy()image_to_merge_np=image_to_merge.to_numpy()metadata={"lines":image_original.shape[0],"samples":image_original.shape[1],"bands":image_original.shape[2]+image_to_merge.shape[2],}ifauto_metadata_extraction:original_meta=image_original.metadatamerged_meta=image_to_merge.metadatametadata_ext={}metadata_ext["wavelength"]=original_meta.get("wavelength",[])+merged_meta.get("wavelength",[])metadata_ext["data type"]=original_meta.get("data type","")metadata_ext["byte order"]=original_meta.get("byte order","")metadata_ext["data ignore value"]=original_meta.get("data ignore value","")metadata_ext["header offset"]=original_meta.get("header offset",0)metadata_ext["interleave"]=original_meta.get("interleave","")metadata_ext["wavelength units"]=original_meta.get("wavelength units","")metadata_ext["acquisition date"]=original_meta.get("acquisition date","")metadata_ext["default bands"]=original_meta.get("default bands",[])metadata_ext["default bands additional"]=merged_meta.get("default bands",[])metadata_ext["description"]=original_meta.get("description","")# metadata_ext["description additional"] = merged_meta.get("description", "")metadata.update(metadata_ext)image_to_merge_np=rescale(image_to_merge_np,(image_original_np.shape[0],image_original_np.shape[1]),)image_to_merge_np=image_to_merge_np.astype(image_original_np.dtype)image_merged=np.concatenate((image_original_np,image_to_merge_np),axis=2)returncreate_image(image=image_merged,save_path=save_path,metadata=metadata,overwrite=overwrite,dtype=dtype,)
defconvert_radiance_image_to_reflectance(image:SpectralImage,panel_correction:np.ndarray,save_path:Annotated[str|Path|None,"Header file (with '.hdr' extension) name with path."]=None,**kwargs:Any,)->np.ndarray|SpectralImage:image_ref_np=image.to_numpy()*panel_correctionifsave_pathisNone:returnimage_ref_npreturncreate_image(image=image_ref_np,save_path=save_path,metadata=image.metadata,**kwargs,)
defcalculate_correction_factor_from_panel(image:SpectralImage,panel_reference_reflectance:float,panel_shape_label:str|None=None,)->np.ndarray:ifpanel_shape_label:panel_shape=image.geometric_shapes.get_by_name(panel_shape_label)ifnotpanel_shape:raiseInvalidInputError(input_value={"panel_shape_label":panel_shape_label},message="Panel shape label not found.",)panel_signatures=image.to_signatures(panel_shape.convex_hull())panel_radiance_mean=panel_signatures.signals.mean()else:temp_mean=image.mean(axis=(0,1))ifnotisinstance(temp_mean,np.ndarray):raiseInvalidInputError(input_value={"image":image},message=f"Expected image.mean(axis=(0, 1)) to return np.ndarray, but got {type(temp_mean).__name__}.",)panel_radiance_mean=temp_meanpanel_reflectance_mean=np.full(image.bands,panel_reference_reflectance)panel_correction=panel_reflectance_mean/panel_radiance_meanreturnpanel_correction
defblockfy_image(image:ImageType,p:Annotated[int,"block row size"],q:Annotated[int,"block column size"],)->list[np.ndarray]:image_np=validate_image_to_numpy(image)# Calculate how many blocks can cover the entire imagebpr=(image_np.shape[0]-1)//p+1# blocks per rowbpc=(image_np.shape[1]-1)//q+1# blocks per column# Pad array with NaNs so it can be divided by p row-wise and by q column-wiseimage_pad=np.nan*np.ones([p*bpr,q*bpc,image_np.shape[2]])image_pad[:image_np.shape[0],:image_np.shape[1],:image_np.shape[2]]=image_npimage_slices=[]row_prev=0forrow_blockinrange(bpc):row_prev=row_block*pcolumn_prev=0forcolumn_blockinrange(bpr):column_prev=column_block*qblock=image_pad[row_prev:row_prev+p,column_prev:column_prev+q,]ifblock.shape==(p,q,image_np.shape[2]):image_slices.append(block)returnimage_slices
defcalculate_image_background_percentage(image:ImageType):image_np=validate_image_to_numpy(image)# Check where any of bands include nan values (axis=2) to get positions of backgroundmask_nan=np.any(np.isnan(image_np),axis=2)# Calculate percentage of backgroundpercentage=np.sum(mask_nan)/mask_nan.size*100returnpercentage